去查网 logo

commutative造句

1. Hence, SUM is commutative to partition.
因而,SUM就是可互换分区。

youdao

2. Natural commutative link is very important also.
自然的交换链接也很重要。

youdao

3. The groups of the solvable equations are commutative .
可解方程的群都是交换群。

youdao

4. Rules can also be used for commutative and noncommutative algebra.
规则可以用于交换和非交换代数。

youdao

5. Such website also is not good commutative boy or girl friend.
这样的网站也不是理想的交换对象。

youdao

6. Finally, an example is given to explain the commutative diagram.
最后,我们给出一个例子来说明这张交换图。

youdao

7. The number of polynomial function over a finite commutative ring.
有限交换环上的多项式函数的个数问题。

youdao

8. Ruless can also be used for commutative and noncommutative algebra.
规则可以用于交换和非交换代数。 。

youdao

9. The central notion in commutative algebra is that of a prime ideal.
交换代数中最核心的概念就是素理想。

youdao

10. Commutative writes also simplify the process of bringing up new partitions.
可交换的写操作简化了新数据块的创建流程。

youdao

11. It is the purely symmetric product; therefore, it is completely commutative.
它是纯对称的积;因此,它是完全可交换的。

youdao

12. Figure 4 illustrates an aggregate operation that is commutative to partition.
图4展示了一个分区可互换的聚集操作。

youdao

13. Structures and properties of quasi-commutative chained semigroups are studied.
研究了拟交换链半群的结构和性质。

youdao

14. Basic properties of the dense sub-semigroups in commutative groups are studied.
引入了可换群的稠密子群,并研究了它的基本性质。

youdao

15. Write operations are idempotent and commutative, based on the time they enter the system.
基于进入系统的时间,写操作具有幂等性(不管操作多少次结果都不变的性质,比如取绝对值的函数就具有幂等性)和交换性(操作顺序不影响结果,比如加法就具有交换性)。

youdao

16. The commutative equation of probability flow is deduced and its definite solution is given.
推导了转换的概率流方程并给出了其定态解。

youdao

17. Currently, Slice can evaluate an aggregate query correctly that is not commutative to partition.
目前,Slice可以正确地估计一个聚集查询,不是分区可互换的。

youdao

18. The commutative problem of arbitrary PI ring is the main research contents of the commutative theory.
任意pi -环的交换性问题是环的交换性理论的一个主要内容。

youdao

19. The standardization question of the normal subgroups over commutative rings has been further discussed.
本文进一步讨论了交换环上辛群的正规子群的标准性问题。

youdao

20. In this paper, we study the subalgebra structure of the general linear Lie algebras over commutative rings.
本文研究了含幺可换环上一般线性李代数的子代数结构。

youdao

21. Commutative link, have the website related to your website only, and the method of relevant industry website.
交换链接,只有与你的网站相关的网站,以及相关的行业网站的方法。

youdao

22. This thesis mainly works on the normality of elementary subgroup of Unitary group over almost commutative rings.
本文主要对几乎可换环上酉群的基本子群的正规性进行了研究。

youdao

23. The fractional ring(module)and the interrelated localization method are the important tools for commutative algebra.
分式环和分式模以及与之相关的局部化方法是交换代数中一个重要工具。

youdao

24. We study the definition of bialgebra and prove the sufficient conditions about a bialgebra is commutative and cocommutative.
从双代数的定义入手,给出了双代数成为交换和余交换双代数的两个充分条件。

youdao

25. We give the commutative of compound function definition and prove the existence of common fixed points of a function sequence.
本文定义了两个函数复合可交换的概念,并证明了函数列存在公共不动点。

youdao

26. As the main results, it gives a Positivstellensatz, a Nullstellensatz and a Nichtnegativstellensatz for matrices over a commutative ring.
作为本文的主要结果,关于交换环上矩阵的正点定理,零点定理和非负点定理被建立。

youdao

27. Furthermore, the meet and the join for the good congruence lattice are determined for the semilattice of commutative cancellative monoids.
特别是确定了交换的可消幺半群的半格的好同余格上的交与并运算。

youdao

28. On commutative ring with the identity, the definition of affine Lie algebras was given by applying the means of generator and defining relation.
在有单位元的交换环上,可应用生成元和定义关系的方法给出仿型李代数的定义。

youdao

29. This paper mainly discuss some property of ring which fit into anti-commutative law, and arrive at a conclusion that anti-commutative law is commutable.
本文主要讨论了适合反交换律的环的一些性质,并得出反交换环一定是交换环。

youdao

30. This paper mainly discuss some property of ring which fit into anti-commutative law, and arrive at a conclusion that anti-commutative law is commutable.
本文主要讨论了适合反交换律的环的一些性质,并得出反交换环一定是交换环。

youdao

按拼音查造句

全部查询工具

关于我们免责声明联系我们网站地图最近更新

免责说明:本站为非营利性网站,本站内容全部由《去查网》从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。

Copyright © 2020 - 2024 quchaw.com All rights reserved.浙ICP备20019715号